Search results for "muscle growth"

showing 3 items of 3 documents

Dynamic Responsive Inguinal Scaffold Activates Myogenic Growth Factors Finalizing the Regeneration of the Herniated Groin

2022

Background: Postoperative chronic pain caused by fixation and/or fibrotic incorporation of hernia meshes are the main concerns in inguinal herniorrhaphy. As inguinal hernia is a degenerative disease, logically the treatment should aim at stopping degeneration and activating regeneration. Unfortunately, in conventional prosthetic herniorrhaphy no relationship exists between pathogenesis and treatment. To overcome these incongruences, a 3D dynamic responsive multilamellar scaffold has been developed for fixation-free inguinal hernia repair. Made of polypropylene like conventional flat meshes, the dynamic behavior of the scaffold allows for the regeneration of all typical inguinal components: …

Biomaterialstissue degeneration; regenerative scaffolds; tissue regeneration; muscle; muscle growth factors; neo-myogenesis; inguinal protrusion diseaseBiomedical Engineeringinguinal protrusion disease muscle muscle growth factors neo-myogenesis regenerative scaffolds tissue degeneration tissue regenerationJournal of Functional Biomaterials; Volume 13; Issue 4; Pages: 253
researchProduct

Systemic blockade of ACVR2B ligands protects myocardium from acute ischemia-reperfusion injury

2019

Activin A and myostatin, members of the transforming growth factor (TGF)-β superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function fo…

MaleActivin Receptors Type IIiskemialihaksetSmad2 ProteinMyostatinPharmacologyMice0302 clinical medicineDrug DiscoverykasvutekijätMyocytes CardiacCardioprotection0303 health sciences318 Medical biotechnologybiologysydänactivins1184 Genetics developmental biology physiologyII RECEPTORS3. Good health030220 oncology & carcinogenesisMolecular MedicineOriginal ArticleSignal TransductionCardiac function curvegrowth differentiation factorsProgrammed cell deathBLOCKINGischemia-reperfusion injuryIschemiaMyocardial Reperfusion InjuryMASSta311103 medical and health sciencesMYOSTATIN-KNOCKOUTCARDIOPROTECTIONGeneticsmedicineAnimalsMolecular Biologylihassolut030304 developmental biologyPharmacologySKELETAL-MUSCLE GROWTHbusiness.industryMyocardiumFOLLISTATINMyostatinmedicine.diseaseACVR2BMice Inbred C57BLACTIVIN-AGDF11GDF11biology.protein3111 BiomedicineproteiinitbusinessReperfusion injuryDIFFERENTIATION FACTOR 11ACVR2BTranscription Factors
researchProduct

Physiological and Molecular Adaptations to Strength Training

2019

High muscle contraction forces that lead to gains in muscle function, size, and strength characterize resistance exercise training. The purpose of this chapter is to outline the adaptations in myofiber size and metabolism that occur by stimuli of hormones and local growth factors, mechanical and metabolic stress of muscle tissue, and myofibrillar disruptions induced by a resistance exercise bout. The chapter will highlight the network of intracellular pathways (including mTOR signaling) that ultimately lead to increases in gene expression and protein synthesis. Accumulation of acute exercise responses by systematic training over time modulate the muscle proteome that can be observed as chan…

resistance exerciseneuromuscular performancemuscle growthsignaling pathways
researchProduct